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Abstract. This work is concerned with ths statistical properties of the uansmission coefficient 
I of 3 ID disordered system. Previous studies have shown that in the long-length limit the 
quantity In lrl-* has a Gaussian distribution. It has also been shown for a number of specific 
cases (including the Anderson model, the random phase model, the Gaussian random potential 
model, and m a i n  stmctural dynamic systems) thaI for w& disorder the distribution depends 
upon a single parameter, in the S M S ~  that the variance is equal to twice the mean value. By 
using a variant of the transfer matrix technique developed by Pendry, it is shown here that this 
one-parameter scaling is in fact a general propeay of weakly disordered LD systems of a certain 
class. regardless of the details of the adopted~mcdel. 

1. Introduction 

Wave propagation through ID disordered systems has received much attention in the field 
of solid state physics, with particular application to electrons on chains of atoms and the 
associated issue of conductivity. It is perhaps less well known that this problem has also 
been the subject of much recent interest in the field of structural dynamics (Hodges 1982, 
Pierre 1990), where the concern is with the effect of manufacturing imperfections on the 
dynamic performance of a structurally repetitive construction such as a submarine hull or 
an aircraft fuselage. In recent work concerning ID elastic waveguides (Langley 1994) it 
has been found that for weak disorder the elastic wave resistance coefficient ltj-’ has the 
ProPeflY 

var[ln Irl-’] = 2(ln It/-’) (1) 

and further that In It\-* has a Gaussian distribution. This property has also been found for 
weak disorder in the long-length limit of a number of solid state models, namely the random 
phase model (Mello 1986), the Gaussian random potential model (Abrikosov 1981, Kumar 
1985), and the Anderson model (Pendry 1982b, Stone and Allan 1983, Slevin and Pendry 
1990). Here the ‘long-length limit’ is taken to mean that the system length is much greater 
than the localization length (Shapiro 1987). Given that the elastic waveguide model and 
each of the solid state models differ significantly in detail, the question arises as to whether 
equation (1) is in fact a general result that can be expected for all models of a certain class. 

Equation (1) is a specific example of ‘scaling’ in a disordered system. Early concepts 
of scaling were expressed in deterministic terms (Abrahams er al 1979) although it is now 
recognized (as reviewed by Shapiro (1986, 1987)) that the statistics of the transmission 
properties of the disordered system must be considered. In this sense ‘scaling’ occurs when 
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the form of the statistical distribution of the transmission coefficient (or an appropriate related 
variable) is independent of the details of the model under consideration. Furthermore, 
the system is said to obey n-parameter scaling if the statistical distribution is governed 
by n independent parameters. Equation (1) states that the mean and the variance of 
In ltl-’ are related; since p(ln ltl-2) has been found to be Gaussian, this implies that the 
statistical distribution of In Itl-2 is subject to one-parameter scaling, at least under the stated 
conditions of weak disorder in the long-length limit. Cohen eta1 (1988) have suggested that 
equation (1) will apply regardless of the details of the ID model adopted, and the evidence 
to date would indicate that this is the case. Flores et at (1987) and Mello and Shapiro 
(1988) have shown that the equation is valid for a fairly general ‘isohopic uncorrelated‘ 
model, in which it is assumed that the transmission and reflection coefficients that describe 
the properties of an element of the system each have a uniformly dishtbuted phase angle, 
which is statistically independent of the amplitude. It is shown explicitly in the present 
work that equation (1) is in fact valid for an even wider class of system: this confirms the 
concept of one-parameter scaling for this type of system and provides a link between the 
solid state and the structural dynamics literature. 

In what follows, a technique developed by Pendry and his co-workers (Pendry 1982a, 
Kirkman and Pendry 1984, Slevin and Pendry 1990) is used to calculate the statistical 
moments of It[-Z for a general I D  system whose properties are described by a 2 x 2 transfer 
matrix. The moments are then related to the statistical distribution of In It]-’, and this leads 
to the main conclusion that equation (1) is in fact generally valid for weak disorder in the 
long-length limit. The analysis also reveals that In It]-* has a Gaussian distribution under 
these conditions, in agreement with previous work. 

2. The statistical moments of Itl” 

In what follows the scattering properties of one element of a 1D chain are described in terms 
of a transfer matrix T. This matrix relates the amplitudes of the right and left travelling 
waves at the right of the element (a; and a; say) to those at the left (a1 and a2 say) in the 
form 

If the element is conservative and symmetric then TII = T2; = l / t* and f i z  = T,*, = 
-(r/t)* where t and r are the transmission and reflection coefficients, with lrI2 = 1. 
It follows from equation (2) that 

W N  = 14/a21~~a (3) 

where the notation is such that the term on the right-hand side is to be evaluated under the 
condition a1 = 0. An expression for the statistical moments of ltl-’ for a disordered chain 
consisting of L elements can now be obtained by following the approach due to Slevin and 
Pendry (1990). Initially, equation (2) is used to express the product of N right-hand wave 
amplitudes in the form 

2 2  2 

a! JI a! JI . . .a! JN = . . . c , k ,  Tj2.kz . . . qNkNak,ak1 . . . ak, (4) 
kl=l kz=I kN=l 
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where each j, = 1 or 2. The product on the left-hand side of this equation may be 
referenced by the number of twos contained in the set (j1 j z  . . . j N ) ,  this number ranging 
from a minimum of zero to’a  maximum of N .  There are thus N + 1 distinct Nth-order 
products of the two right-hand wave amplitudes U;  and U;. By letting U$ = u,!,uJ2. . .U;#, 

where there are j twos among the subscripts j n ,  equation (4) may be re-expressed in the 
form (Kirkman and Pendry 1984) 

.~ ~ 

It follows directly from equation (5) that 

N N  
= ~ ~ B j m k , u k u :  

k=O n=O 

(8) 

where use has been made o€ the fact that T22 = TG and T z ~  = TA. Equation (7) may be 
expressed in matrix form by introducing the indexing notation 

r(N-m-c+p+q) Wtm-p-yT*(j+n-p-q) 
x Tl, TI 2 12 

which yields 

U’ = cv (13) 

where C,, = Bjmkn has dimension ( N  + x ( N  + 1)*. Equation (13) relates to wave 
transmission across a single element of a ID chainGIearly the matrix c plays the role of 
a transfer matrix, and the corresponding result for wave transmission across L sequential 
elements will have the form 

where C, is the transfer mamx for the rth element. It follows from equation (3) and the 
definition of w and w’ that the final diagonal entry of the matrix that appears in equation (14) 
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is just l t ~ I - * ~ ,  where t L  is the transmission coefficient of the chain. If the disorder in the 
element properties is taken to be statistically homogeneous, then the average of this term is 

where w is a vector of dimension (N + 1)' whose entries are all zero apart from the final 
component, which is unity. This result may be re-expressed in the form 

where hj is the jth eigenvalue of (C), and ej and e; are the final entries in the j th  left- 
and right-hand eigenvectors respectively. In the long-length limit ( L  + CO) the summation 
that appears in equation (16) will be dominated by the eigenvalue of largest modulus, A,, 
say, and thus 

(17) 
For the ordered system it can be shown that Am, = 1; if the effect of disorder produces 
a change in A,, of order A, then equation (17) will only be a valid approximation if 
AL >> 1. In the notation of Shapiro (1987) this is equivalent to the condition L/Lc  >> 1 
where L, is the 'localization length' of the system. This condition is assumed to be met 
in what follows. It can be noted that the result given by equation (17) is basis dependent, 
in the sense that the basis used to describe the wave amplitudes uj and uz that appear in 
equation (2) will affect the value of e,,&, (but not A-). Thus a linear transformation to 
a new set of wave coordinates, bl and h say, (b  = Sa for some matrix S) will change the 
statistical moments of IrLI-2. This is not true of the logarithm of the statistical moments 
however, since for large L equation (17) yields 

2N L (IrLl- ) N Amem,&,. 

ln(lt'l-2N) N Llnh,. (18) 

The relationship between this result and the statistical distribution of In I t ~ l - ~  is discussed 
in the following section. 

3. The relation to the statistical distribution of InltLI-' 

Slevin and Pendry (1990) have shown that in the long-length limit the variable In jfLI-2 
becomes normally distributed. More generally, if In ltLl-' is assumed to have a near- 
normal distribution then its probability density function may be written in the form of a 
Gram-Charlier or Edgeworth series (Ibrahim 1985) as follows: 

m 
p ( z )  = (l/&)e-z2'Z h,H.(z) 

n=O 
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Here H.(z) is the nth Hermite polynomial and c1 and cz are the first two cumulants of 
In ItLj-2-that is, the mean and variance. Furthermore, the coefficients h, that appear in 
equation (19) are dependent on the higher-order cumulants-For the Gram-Charlier series 
the first terms are 

ho = 1 (24) 

where c, represents the nth cumulant so that c3 is the skewness and c4 the kurtosis. It 
follows from equation (19) that the statistical moments of lfL[-* can be expressed in the 
form 

which implies that 

ln(1tL1-2N) = Ncl + NZc2/2 -t In[l f h s c ;  912 N 3 + h4c:N' +. . . I .  (29) 

It can be noted that the grouping of terms which appears in this result arises from the 
Gram-Charlier representation, equation (19). A more direct analysis leads to equation (29) 
with the right-hand side replaced by Cc,N"/n!; this is in fact just a re-ordering of the terms 
that appear in the present representation. It is clear from equation (29) that knowledge of 
In([t$2) will give some insight into the nature of the cumulants of In [tLI-2-this issue is 
further considered in the following section for the case of weak disorder. 

4. Weak disorder 

As mentioned in section 2, the wave amplitudes ai and a2 that appear in equation (2) can 
be expressed in any basis. In the present analysis it is convenient to'choose that basis for 
which the transfer matrix T is diagonal in the absence of disorder. Before considering the 
effects of disorder, it is useful to consider the smcture of the matrix C that appears in 
equation (13) for the case of a perfect system: since T,z = 0 for the chosen basis, it can 
readily be shown that C is diagonal. Furthermore, the 01 diagonal enhy has the form 

(30) N-j+m *(N-mfj) 
C" =TI, T,, 

where 1y = j (N + 1) + m + 1,  in accordance with equation (10). Within an energy band TI I 

has the form TI 1 = e" where E is the Bloch wavenumber (usually known as the propagation 
constant in structural dynamics), and thus C,, will be unity whenever j = m. Since j ~ a n d  
m range from zero to N there will be N + 1 unit diagonals OF this type, which implies that C 
will have N + 1 unit eigenvalues. Other unit eigenvalues can occur if E is a rational fraction 
of K ;  for example, at mid-band E = x / 2  and additional unit eigenvalues will be associated 
with the term m - j = 12r for any integer r-this leads to a well known anomaly in the 
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localization length at mid-band (Kappus and Wegner 1981). In general, if 6 = nln/nl then 
additional unit eigenvalues will arise for N 2 n2, and the statistical moments of [ t L [ - 2  from 
nz onwards will be affected. Such effects are not considered in the present analysis, where 
it is assumed from the outsct that E is not a rational &action of n. 

The N + 1 unit eigenvalues of C in the absence of disorder correspond to the case 
m = j in equation (30); in more detail, the matrix will have 2N + 1 distinct eigenvalues 
corresponding to m - j = r say ( -N  < r < N ) ,  with the rth eigenvalue being repeated 
N + 1 - r times. For weak disorder the effect of irregularity on the eigenvalues of C 
can be investigated by considering each of the 2N + 1 blocks of repeated eigenvalues 
independently. For the rth eigenvalue this procedure consists of analysing the effect of 
disorder on an ( N  + 1 - r )  x (N + 1 - r )  sub-matrix formed from the entries of C that 
have m - j = n - k = r ,  so that 01 = j ( N  + 2 ) + r  + 1 and j? = k ( N  + 2 )  + r  + 1. It 
follows from equation (8) that a general term in this sub-matrix (CJk say) has the form 

x . . . IT1212Li+k+'-P- q ) ( ~ l  / T;I Y . (31) 

As mentioned previously, in the absence of disorder the entries of the transfer matrix have 
the form El = eiL and T12 = 0. In general, disorder will be caused by random variations 
in one or more of the basic physical properties of the system. If the disorder is considered 
to arise from variations in a single parameter, 0 say, then a Taylor series expansion of the 
transfer matrix will yield 

T ~ I  = ei'(l +f ie  + fie2 + . . .) 
q2 = glo + g2e2 + g3e3 + . . . 

(32)  

(33) 

where f; and gi are the appropriate coefficients and, without loss of generality, 9 can 
be considered to have zero mean. The fact that the determinant of the transfer matrix 
must always be unity implies that [T,lIz - [T12l2 = 1, which means that there are certain 
relationships between the coefficients fi and g;-furthermore, it follows that fi must be 
purely imaginary since ]TlI[2 cannot contain afirst-order term in B .  Equations (32) and (33 )  
then lead to the following result: 

where the coefficients d, may be expressed in terms of g;. Now, to second order in 0,  the 
term (T11 /T f i )~  that appears in equation (31) may be written in the form 

( T I I / T , ; ) '  = ea"{l+Or(h - f ; ) + ~ 2 ~ r f i - r f i + ~ ( ~ - ~ ) ~ ~ / ~ ~ r ( ~ + ~ ) ~ ~ 2 / ~ - r 2 ~ f i ~ 2 ~ ~  

= e'"(1+ S) (37) 

where 8 is defined accordingly. Given that 8 has zero mean, it follows from equation (36) 
that for small disorder the condition (A2) << (A) will normally apply, which means that the 
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effect of weak disorder on (C) may be investigated by retaining only those terms up to first 
order in A in equation (31). Furthermore, it follows from equations (36) and (37) that terms 
of the form 6A" with n 2 1 may also be neglected. Although the present development 
is based on a single physical parameter 8, similar conclusions regarding the order of the 
terms 6 and A would arise from a more general multi-parameter expansion of TIl and TIz 
in place of equations (32) and (33). 

An approximate solution for the eigenvalues of the matrix C' and hence (C') can now 
be obtained by retaining in equation (31) only those terms that are zero order or first order 
in A and 6. The first group of such terms arises for j+k+r -p -q  = 0, so that lTvJ2 does 
not appear in the summation: this condition is only possible for j = k = p = q - r ,  and the 
resulting contribution to C' consists of the term eZisr(l + A)N(l + 6) N ezisr(l + NA + 6 )  
on each diagonal. The second group of non-negligible terms has j + k + r - p - q = 1, so 
that the power of [TI# in equation (31) is unity. There are three situations for which this 
condition can arise, namely (i) k = p = q - r = j - 1, (ii) k = p + 1 = q + 1 - r = j + 1, 
and (iii)k = j with j = p  = q + l - r  or j = p + l  = q - r .  Case (i) leads to the presence 
of the term ez f r j ( j  + r)A in Cj,j-l,  while case (ii) leads to ez"'(N - j ) (N  - j - r)A in 
Cj.j+l. Finally, case (iii) adds the two terms eZif'j(N- j )A and e2'"(j +r ) (N-  j -r)A 
to Cjj. It thus follows that to first order in A and 6, C' is a tridiagonal matrix with 

C! J.J-1 . = j ( j  + r)AeZif' (38) 

(39) 

(40) 

.. ~ 

ID disordered systems 

. .  

Cjj = 11 + NA + 6 + ( j  + r)(N - r - j )A + j ( N  - j)A}ezGr 

Cj,jrl = ( N  - j ) ( N  - j - r)Aez". 

It is readily confirmed that each row of this matrix sums to a common result, p say, where 

It follows that p is an eigenvalue of C', with the associated right eigenvector having each 
entry equal to unity. What is actually required for the purposes of the present analysis is 
the largest eigenvalue of the matrix (C), so that the statistical moments of lfLI-' may be 
estimated from equation (18). The result given by equation (41) is by contrast one of the 
eigenvalues of the rth sub-block of C the corresponding eigenvalue for the rth sub-block 
of (C) is simply given by equation (41) with A and S replaced by (A) and (6) respectively, 
which in fact just yields (p). It can be noted from equations (34)-(37) that while (A) is 
real, (6) may be complex. However, it also follows from equation (37) that both the real 
and imaginary components of (6)  are of order (A), which means that the imaginary part of 
(6 )  makes a negligible contribution to the modulus of (p). Furthermore, to first order in 
(A) the norm of (C) is given by [[(C')ll, = I(@)[, which implies that (p) is the eigenvalue 
of largest modulus for the rth sub-block since it is known that [[(C')[\, > [Aj\ for any 
eigenvalue Aj. The value of r that yields the maximum value of (p) will depend upon the 
form of (6): for the Anderson model it can be shown that (6 )  = -2r2(A), while more 
generally equation (37) implies that the real part of (6) will be negative while the imaginary 
part has a negligible effect. It thus follows from equation (41) that the largest eigenvalue 
of (C) corresponds to the case r = 0, and can thus be written in the form 

A,, = 1 + N ( N  + I)(A) (42) 

lnh,, 2: N ( N +  I)(A). (43) 
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A comparison between equations (18), (29) and (43) then reveals that for weak disorder the 
first two cumulants of In1t‘l-’ have the form 

C Z = ~ C ~  =2L(A).  (44) 

This result confirms the validity of equation (1) for a weakly disordered ID system of the 
type described by equation (2). It also follows that to the present level of approximation 
In l r ~ l - ’  has a Gaussian distribution, in the sense that the higher-order cumulants are either 
independent of L or are of second or higher order in (A). 

5. Example applications 

5.1. The Anderson model 

Slevin and Pendry (1990) have shown that the transfer matrix T for the Anderson model 
with diagonal disorder has the form 

where the wavenumber k is related to the energy E by 

E = -2cosk. 

The disorder parameter 6, that appears in equation (45) is written in the form 

6. = E,,/Zsink (47) 

where E, is the randomly distributed site energy, with (E) = 0. In the absence of disorder 
(6, = 0), the matrix T is diagonal, and thus the basis used to describe the wave motion 
conforms with the analysis of section 4. It then follows from equations (34) and (44) that 

cz = ZCI = ZLvar(<,,)/(4 - E’) (48) 

which is in full agreement with previous work. It can be noted that Slevin and Pendry 
(1990) have computed CI and c2 by analytical continuation of the analysis of section 2 to 
non-integer N .  This approach leads to an expression for c, in terms of the nth derivative 
with respect to N of the largest eigenvalue of (C); for ci an analytical result was obtained, 
whereas numerical methods were employed for cz. Although the numerical procedure did 
not converge for higher values of c. it was conjectured that c. = 0 for n > 2. This 
conjecture is confirmed by the present analytical approach. It can further be noted that 
Pendry (1982b) has obtained a similar result to equation (40) for the Anderson model by 
application of the s y m m e ~ c  group. 
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5.2. The structural waveguide 

Many structural configurations consist of a series of discontinuities nominally evenly spaced 
on an otherwise uniform shucture. A prime example is that of a ring stiffened cylindrical 
shell, as used in an aircraft fuselage or a submarine hull, where the rings or frames form 
the discontinuities and irregular frame spacing provides the source of the disorder. For each 
circumferential Fourier component of the shell displacement, the structure may be modelled 
as a onedimensional waveguide with the transfer matrix (Langley 1994) 

Here k is the structural wavenumber, 1 is the spacing between the frames, and t and r are 
the frame transmission and reflection coefficients. Numerical studies (Langley 1994) of the 
eigenvalues of the matrix ( C ( N ) )  for this case have revealed that for weak disorder in 1 

which conforms to equation (42) for small A. Now it follows from equations (42) and (44) 
that the value of c1 may be deduced from knowledge of Amx(I): in this case hma(l) may 
be evaluated by the perturbation technique to yield (just off mid-band) 

where U is the standard deviation of 1, and L is the number of frames. This result has been 
found to agree with simulation studies for a beam on multiple simple supports (Langley 
1994, Bouzit and Pierre 1992), thus confirming the validity of the analysis of section 4 for 
the system governed by equation (49). 

6. Conclusions 

It has been shown that equation (1) is valid in the long-length limit (LIL, >> 1 in the notation 
of Shapiro (1987)) for any weakly disordered ID system that may be represented in the form 
of equation (2); this result has previously been demonstrated only for a number of specific 
models (including the Anderson model, the random phase model, and the Gaussian random 
potential model). The present analysis has also confirmed that In It'l-' has a Gaussian 
distribution under these conditions. It has thus been demonstrated that the variable In It~l-' 
obeys oneparameter scaling under the stated conditions, in the sense that the form of the 
statistical distribution p(ln1tLJ2) is independent of the detailed model considered and is 
described by a single parameter. Much of the earlier work on scaling has been summarized 
by Cohen et a1 (1988)-it is suggested therein that equation (1) may be of general validity, 
and this has been demonstrated explicitly by the present analysis. W i l e  being based on the 
analysis technique developed by Pendry (1982a), the present approach is relatively direct 
in that the use of analytic continuation (Slevin and Pendry 1990) and the symmetric group 
(Pendry 1982b) has been avoided.  this has been made possible by limiting the present 
discussion to the case of weak disorder. 

In the case of strong disorder, Slevin and Pendry (1990) have shown that while In ItLl-' 
remains Gaussian in the long-length limit, equation (1) no longer holds; this behaviour has 
recently been confirmed numerically for a disordered structural waveguide (Langley 1994). 
More generally, Cohen et al  (1988) have shown that two-parameter scaling may generally 
be expected for strong disorder and high-dimensional systems. 
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